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Abstract. The classical hypercontractive inequality for the noise operator on the discrete cube
plays a crucial role in many of the fundamental results in the Analysis of Boolean functions, such
as the KKL (Kahn-Kalai-Linial) theorem, Friedgut's junta theorem and the invariance principle of
Mossel, O'Donnell and Oleszkiewicz. In these results the cube is equipped with the uniform (1/2-
biased) measure, but it is desirable, particularly for applications to the theory of sharp thresholds,
to also obtain such results for general p-biased measures. However, simple examples show that when
p is small there is no hypercontractive inequality that is strong enough for such applications.

In this paper, we establish an e�ective hypercontractivity inequality for general p that applies to
`global functions', i.e. functions that are not signi�cantly a�ected by a restriction of a small set of
coordinates. This class of functions appears naturally, e.g. in Bourgain's sharp threshold theorem,
which states that such functions exhibit a sharp threshold. We demonstrate the power of our tool by
strengthening Bourgain's theorem, thereby making progress on a conjecture of Kahn and Kalai. An
additional application of our hypercontractivity theorem, is a p-biased analog of the seminal invariance
principle of Mossel, O'Donnell, and Oleszkiewicz. In a companion paper, we give applications to the
solution of two open problems in Extremal Combinatorics.

1. Introduction

The �eld of analysis of Boolean functions is centered around the study of functions on the discrete
cube {0, 1}n, via their Fourier�Walsh expansion, often using the classical hypercontractive inequality
for the noise operator, obtained independently by Bonami [10], Gross [24] and Beckner [4]. In particu-
lar, the fundamental KKL theorem of Kahn, Kalai and Linial [29] applies hypercontractivity to obtain
structural information on Boolean valued functions with small `total in�uence' / `edge boundary' (see
Section 1.2); such functions cannot be `global': they must have a co-ordinate with large in�uence.

The theory of sharp thresholds is closely connected (see Section 1.3) to the structure of Boolean
functions of small total in�uence, not only in the KKL setting of uniform measure on the cube, but
also in the general p-biased setting. However, we will see below that the hypercontractivity theorem
is ine�ective for small p. This led Friedgut [20], Bourgain [20, appendix], and Hatami [25] to develop
new ideas for proving p-biased analogs of the KKL theorem. The theme of these works can be roughly
summarised by the statement: an e�ective analog of the KKL theorem holds for a certain class of
`global' functions. However, these theorems were incomplete in two important respects:

• Sharpness: Unlike the KKL theorem, they are not sharp up to constant factors.
• Applicability: They are only e�ective in the `dense setting' when µp(f) is bounded away from 0
and 1, whereas the `sparse setting' µp(f) = o(1) is needed for many important open problems.

In particular, a sparse analogue of the KKL theorem is a key missing ingredient in a strategy of Kahn
and Kalai [28] for settling their well-known conjecture relating critical probabilities to expectation
thresholds.

Main result. The fundamental new contribution of this paper is a hypercontractive theorem for
functions that are `global' (in a sense made precise below). This has many applications, of which the
most signi�cant are as follows.
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• We strengthen Bourgain's Theorem by obtaining an analogue of the KKL theorem that is both
quantitively tight and applicable in the sparse regime.

• We obtain a sharp threshold result for global monotone functions in the spirit of the Kahn-
Kalai conjecture, bounding the ratio between the critical probability (where µp(f) = 1

2 ) and
the smallest p for which µp(f) is non-negligible.

• We obtain a p-biased generalisation of the seminal invariance principle of Mossel, O'Donnell
and Oleszkiewicz [46] (itself a generalisation of the Berry-Esseen theorem from linear functions
to polynomials of bounded degree), thus opening the door to p-biased versions of its many
striking applications in Hardness of Approximation and Social Choice Theory (see O'Donnell
[47, Section 11.5]) and Extremal Combinatorics (see Dinur�Friedgut�Regev [14]).

1.1. Hypercontractivity of global functions. Before formally stating our main theorem, we start
by recalling (the p-biased version of) the classical hypercontractive inequality. Let1 p ∈

(
0, 1

2

]
. For

r ≥ 1 we write ‖ · ‖r (suppressing p from our notation) for the norm on Lr({0, 1}n, µp).

De�nition 1.1 (Noise operator). For x ∈ {0, 1}n we de�ne the ρ-correlated distribution Nρ(x) on
{0, 1}n: a sample y ∼ Nρ(x) is obtained by, independently for each i setting yi = xi with probability
ρ, or otherwise (with probability 1 − ρ) we resample yi with P(yi = 1) = p. We de�ne the noise
operator Tρ on L

2({0, 1}n, µp) by
Tρ (f) (x) = Ey∼Nρ(x) [f (y)] .

Hölder's inequality gives ‖f‖r ≤ ‖f‖s whenever r ≤ s. The hypercontractivity theorem gives an
inequality in the other direction after applying noise to f ; for example, for p = 1/2, r = 2 and s = 4
we have

‖Tρf‖4 ≤ ‖f‖2
for any ρ ≤ 1√

3
. A similar inequality also holds when p = o(1), but the correlation ρ has to be

so small that it is not useful in applications; e.g. if f(x) = x1 (the `dictator' or `half cube'), then

‖f‖2 =
√
µp(f) =

√
p and Tρf(x) = Ey∼Nρ(x)y1 = ρx1 + (1− ρ)p, so ‖Tρf‖4 > (E[ρ4x4

1])1/4 = ρp1/4.

Thus we need ρ = O(p1/4) to obtain any hypercontractive inequality for general f .

Local and global functions. To resolve this issue, we note that the tight examples for the hypercon-
tractive inequality are local, in the sense that a small number of coordinates can signi�cantly in�uence
the output of the function. On the other hand, many functions of interest are global, in the sense that
a small number of coordinates can change the output of the function only with a negligible probability;
such global functions appear naturally in Random Graph Theory [2], Theoretical Computer Science
[20] and Number Theory [21]. Our hypercontractive inequality will show that constant noise su�ces
for functions that are global in a sense captured by generalised in�uences, which we will now de�ne.

Let f : {0, 1}n → R. For S ⊂ [n] and x ∈ {0, 1}S , we write fS→x for the function obtained from
f by restricting the coordinates of S according to x (if S = {i} is a singleton we simplify notation to
fi→x). We write |x| for the number of ones in x. For i ∈ [n], the ith in�uence is Ii(f) = ‖fi→1−fi→0‖22,
where the norm is with respect to the implicit measure µp. In general, we de�ne the in�uence with
respect to any S ⊂ [n] by sequentially applying the operators f 7→ fi→1−fi→0 for all i ∈ S, as follows.

De�nition 1.2. For f : {0, 1}n → R and S ⊂ [n] we let (suppressing p in the notation)

IS (f) = Eµp
[( ∑

x∈{0,1}S
(−1)

|S|−|x|
fS→x

)2
]
.

We say f has β-small generalised in�uences if IS(f) ≤ β E[f2] for all S ⊆ [n] .

The reader familiar with the KKL theorem and the invariance principle may wonder why it is
necessary to introduce generalised in�uences rather than only considering in�uences (of singletons).
The reason is that under the uniform measure the properties of having small in�uences or small

1The case where p > 1
2
is similar.
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generalised in�uences are qualitatively equivalent, but this is no longer true in the p-biased setting for
small p (consider f(x) = x1x2+···+xn−1xn

‖x1x2+···+xn−1xn‖ ).

We are now ready to state our main theorem, which shows that global2 functions are hyper-
contractive for a noise operator with a constant rate. Moreover, our result applies to general Lr

norms and product spaces (see Section 3), but for simplicity here we just highlight the case of (4, 2)-
hypercontractivity in the cube.

Theorem 1.3. Let p ∈
(
0, 1

2

]
. Suppose f ∈ L2 ({0, 1}n , µp) has β-small generalised in�uences (for

p). Then ‖T1/5f‖4 ≤ β1/4‖f‖2.

We now move on to demonstrate the power of global hypercontractivity in the contexts of isoperime-
try, noise sensitivity, sharp thresholds, and invariance. We emphasise that Theorem 1.3 is the only
new ingredient required for these applications, so we expect that it will have many further applications
to generalising results proved via usual hypercontractivity on the cube with uniform measure.

1.2. Isoperimetry and in�uence. Stability of isoperimetric problems is a prominent open problem
at the interface of Geometry, Analysis and Combinatorics. This meta-problem is to characterise sets
whose boundary is close to the minimum possible given their volume; there are many speci�c problems
obtained by giving this a precise meaning. Such results in Geometry were obtained for the classical
setting of Euclidean Space by Fusco, Maggi and Pratelli [23] and for Gaussian Space by Mossel and
Neeman [45].

The relevant setting for our paper is that of the cube {0, 1}n, endowed with the p-biased measure
µp. We refer to this problem as the (p-biased) edge-isoperimetric stability problem. We identify any
subset of {0, 1}n with its characteristic Boolean function f : {0, 1}n → {0, 1}, and de�ne its `boundary'
as the (total) in�uence3

I [f ] =

n∑
i=1

Ii [f ] , where each Ii [f ] = Pr
x∼µp

[f (x⊕ ei) 6= f (x)] ,

i.e. the ith in�uence Ii [f ] of f is the probability that f depends on bit i at a random input according
to µp. (The notion of in�uence for real-valued functions, given in Section 1.1, coincides with this
notion for Boolean-valued functions). When p = 1/2 the total in�uence corresponds to the classical
combinatorial notion of edge-boundary4.

The KKL theorem of Kahn, Kalai and Linial [29] concerns the structure of functions f : {0, 1}n →
{0, 1}, considering the cube under the uniform measure, with variance bounded away from 0 and 1
and with total in�uence is upper bounded by some number K. It states that f has a coordinate with
in�uence at least e−O(K). The tribes example of Ben-Or and Linial [5] shows that this is sharp.

p-biased versions. The p-biased edge-isoperimetric stability problem is somewhat understood in the
dense regime (where µp (f) is bounded away from 0 and 1) especially for Boolean functions f that
are monotone (satisfy f (x) ≤ f (y) whenever all xi ≤ yi). Roughly speaking, most edge-isoperimetric
stability results in the dense regime say that Boolean functions of small in�uence have some `local'
behaviour (see the seminal works of Friedgut�Kalai [22], Friedgut [19, 20], Bourgain [20, Appendix],
and Hatami [25]). In particular, Bourgain (see also [47, Chapter 10]) showed that for any monotone
Boolean function f with µp (f) bounded away from 0 and 1 and pI [f ] ≤ K there is a set J of

O (K) coordinates such that µp (fJ→1) ≥ µp (f) + e−O(K2). This result is often interpreted as `almost
isoperimetric (dense) subsets of the p-biased cube must be local' or on the contrapositive as `global

2Strictly speaking, our assumption is stronger than the most natural notion of global functions: we require all
generalised in�uences to be small, whereas a function should be considered global if it has small generalised in�uences
IS(f) for small sets S. However, in practice, the hypercontractivity Theorem is typically applied to low-degree truncations
of Boolean functions (see Section 3.1) , when there is no di�erence between these notions, as IS(f) = 0 for large S.

3Everything depends on p, which we �x and suppress in our notation.
4For the vertex boundary, stability results showing that approximately isoperimetric sets are close to Hamming balls

were obtained independently by Keevash and Long [32] and by Przykucki and Roberts [48].
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functions have large total in�uence'. Indeed, if a restriction of a small set of coordinates can signi�cantly
boost the p-biased measure of a function, then this intuitively means that it is of a local nature.

For monotone functions, the conclusion in Bourgain's theorem is equivalent (see Section 4) to having

some set J of size O(K) with IJ (f) ≥ e−O(K2). Thus Bourgain's theorem can be viewed as a p-biased
analog of the KKL theorem, where in�uences are replaced by generalised in�uences. However, unlike
the KKL Theorem, Bourgain's result is not sharp, and the anti-tribes example of Ben-Or and Linial
only shows that the K2 term in the exponent cannot drop below K.

As a �rst application of our hypercontractivity theorem we replace the term e−O(K2) by the term
e−O(K), which is sharp by Ben-Or and Linial's example, see Section 4.

Theorem 1.4. Let p ∈
(
0, 1

2

]
, and let f : {0, 1}n → {0, 1} be a monotone Boolean function with

µp (f) bounded away from 0 and 1 and I [f ] ≤ K
p . Then there is a set J of O (K) coordinates such that

µp (fJ→1) ≥ µp (f) + e−O(K).

For general functions we prove a similar result, where the conclusion µp (fJ→1) ≥ µp (f) + e−O(K)

is replaced with IJ (f) ≥ e−O(K).

The sparse regime. On the other hand, the sparse regime (where we allow any value of µp(f)) seemed
out of reach of previous methods in the literature. Here Russo [49], and independently Kahn and Kalai
[28], gave a proof of the p-biased isoperimetric inequality: pI [f ] ≥ µp (f) logp (µp (f)) for every f . They
also showed that equality holds only for the monotone sub-cubes. Kahn and Kalai posed the problem
of determining the structure of monotone Boolean functions f that they called d-optimal, meaning that
pI [f ] ≤ dµp (f) logp (µp (f)), i.e. functions with total in�uence within a certain multiplicative factor
of the minimal value guaranteed by the isoperimetric inequality. They conjectured in [28, Conjecture
4.1(a)] that for any constant C > 0 there are constants K, δ > 0 such that if f is C log (1/p)-optimal
then there is a set J of ≤ K log 1

µp(f) coordinates such that µp (fJ→1) ≥ (1 + δ)µp(f).

The corresponding result with a similar conclusion was open even for C-optimal functions! Our
second theorem is a variant of the Kahn�Kalai conjecture which applies to C log (1/p)-optimal functions
when C is su�ciently small (whereas the conjecture requires an arbitrary constant C). We compensate
for our stronger hypothesis in the following result by obtaining a much stronger conclusion than that

asked for by Kahn and Kalai; for example, if f is log(1/p)
100C -optimal then µp (fJ→1) ≥ µp(f)0.01. We will

also show that our result is sharp up to the constant factor C.

Theorem 1.5. Let p ∈
(
0, 1

2

]
, K ≥ 1 and let f be a Boolean function with pI [f ] < Kµp (f). Then

there is a set J of ≤ CK coordinates, where C is an absolute constant, such that µp (fJ→1) ≥ e−CK .

1.3. Sharp thresholds. The results of Friedgut and Bourgain mentioned above also had the striking
consequence that any `global' Boolean function has a sharp threshold, which was a breakthrough in
the understanding of this phenomenon, as it superceded many results for speci�c functions.

The sharp threshold phenomenon concerns the behaviour of µp(fn) for p around the critical proba-
bility, de�ned as follows. Consider any sequence fn : {0, 1}n → {0, 1} of monotone Boolean functions.
For t ∈ [0, 1] let pn(t) = inf{p : µp(fn) ≥ t}. In particular, pcn := pn(1/2) is commonly known as the
`critical probability' (which we think of as small in this paper). A classical theorem of Bollobás and
Thomason [9] shows that for any ε > 0 there is C > 0 such that pn(1− ε) ≤ Cpn(ε). This motivates
the following de�nition: we say that the sequence (fn) has a coarse threshold if for each ε > 0 the
length of the interval [pn(ε), pn(1− ε)] is Θ(pcn), otherwise we say that it has a sharp threshold.

The classical approach for understanding sharp thresholds is based on the Margulis�Russo formula
dµp(f)
dp = Iµp (f), see [41] and [49]. Here we note that if f has a coarse threshold, then by the Mean

Value Theorem there is a constant ε > 0, some p with µp(f) ∈ (ε, 1 − ε) and pIµp (f) = Θ(1), so one
can apply various results mentioned in Section 1.2. Thus Bourgain's Theorem implies that there is a

set J of O (K) coordinates such that µp′ (fJ→1) ≥ µp′ (f) + e−O(K2). While this approach is useful for
studying the behaviour of f around the critical probability, it rarely gives any information regarding
the location of the critical probability. Indeed, many signi�cant papers are devoted to locating the
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critical probability of speci�c interesting functions, see e.g. the breakthroughs of Johansson, Kahn and
Vu [27] and Montgomery [43].

A general result was conjectured by Kahn and Kalai for the class of Boolean functions of the form

fn : {0, 1}(
[n]
2 ) → {0, 1}, whose input is a graph G and whose output is 1 if G contains a certain �xed

graph H. For such functions there is a natural `expectation heuristic' pEn for the critical probability,
namely the least value of p such that the expected number of copies of any subgraph of H in G (n, p)
is at least 1/2. Markov's inequality implies pcn ≥ pEn , and the hope of the Kahn�Kalai Conjecture is
that there is a corresponding upper bound up to some multiplicative factor. They conjectured in [28,
Conjecture 2.1] that pcn = O

(
pEn log n

)
, but this is widely open, even if log n is replaced by no(1).

The proposed strategy of Kahn and Kalai to this conjecture via isoperimetric stability is as follows.

• Prove a lower bound on µpEn (fn).
• Show (e.g. via Russo's lemma) that if |[pE , pc]| is too large, then the p-biased total in�uence
at some point in the interval [pE , pc] must be relatively small.

• Prove an edge-isoperimetric stability result that rules out the latter possibility.

Theorem 1.5 makes progress on the third ingredient. Combining it with Russo's Lemma, we obtain
the following result that can be used to bound the critical probability. Let f be a monotone Boolean
function. We say that f is M -global in an interval I if for each set J of size ≤ M and each p ∈ I we
have µp (fJ→1) ≤ µp (f)

0.01
.

Theorem 1.6. There exists an absolute constant C such that the following holds for any monotone
Boolean function f with critical probability pc and p ≤ pc. Suppose for some M > 0 that f is M -global
in the interval [p, pc] and that µp (f) ≥ e−M/C . Then pc ≤MCp.

To see the utility of Theorem 1.6, imagine that one wants to bound the critical probability as pcn ≤ p,
but instead of showing µp(fn) ≥ 1

2 one can only obtain a weaker lower bound µp (f) ≥ e−M/C , where

f is M -global; then one can still bound the critical probability as pcn ≤MO(1)p.

1.4. Noise sensitivity. Studying the e�ect of `noise' on a Boolean function is a fundamental paradigm
in various contexts, including hypercontractivity (as in Section 1.1) and Gaussian isoperimetry (via
the invariance principle, see Section 8). Roughly speaking, a function f is `noise sensitive' if f(x) and
f(y) are approximately independent for a random input x and random small perturbation y of x; an
equivalent formulation (which we adopt below) is that the `noise stability' of f is small (compared to
µp (f)). Formally, we use the following de�nition.

De�nition 1.7. The noise stability Stabρ(f) of f ∈ L2({0, 1}n, µp) is de�ned by

Stabρ (f) = 〈f,Tρf〉 = Ex∼µp [f (x) Tρf (x)] .

A sequence fn of Boolean functions is said to be noise sensitive if for each �xed ρ we have Stabρ (fn) =

µp (fn)
2

+ o (µp (fn)) .

Note that everything depends on p, but this will be clear from the context, so we suppress p from
the notation Stabρ. Kahn, Kalai, and Linial [29] (see also [47, Section 9]) showed that sparse subsets of
the uniform cube are noise sensitive, where we recall that the sequence (fn) is sparse if µp (fn) = o (1)
and dense if µp (fn) = Θ (1).

The relationship between noise and in�uence in the cube under the uniform measure was further
studied by Benjamini, Kalai, and Schramm [8] (with applications to percolation), who gave a complete
characterisation: a sequence (fn) of monotone dense Boolean functions is noise sensitive if and only if
the sum of the squares of the in�uences of fn is o (1). Schramm and Steif [50] proved that any dense
Boolean function on n variables that can be computed by an algorithm that reads o (n) of the input
bits is noise sensitive. Their result had the striking application that the set of exceptional times in
dynamical critical site percolation on the triangular lattice, in which an in�nite cluster exists, is of
Hausdor� dimension in the interval

[
1
6 ,

31
36

]
. Ever since, noise sensitivity was considered in many other

contexts (see e.g. the recent results and open problems of Lubetzky�Steif [40] and Benjamini [7]).
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The p-biased setting. In contrast to the uniform setting, in the p-biased setting for small p it is no
longer true that sparse sets are noise sensitive (e.g. consider dictators). Our main contribution to the
theory of noise sensitivity is showing that `global' sparse sets are noise sensitive. Formally, we say that
a sequence fn of sparse Boolean functions is weakly global if for any ε, C > 0 there is n0 > 0 so that
µp ((fn)J→1) < ε for all n > n0 and J of size at most C.

Theorem 1.8. Any weakly global sequence of Boolean functions is noise sensitive.

1.5. Further applications of global hypercontractivity. Besides the applications of Theorem
1.3 to isoperimetry, sharp thresholds and noise sensitivity discussed above, in Section 8 we will also
generalise the Invariance Principle of Mossel, O'Donnell and Oleszkiewicz [46] to the p-biased setting:
we show that if a low degree function on the p-biased cube is global (has small generalised in�uences)
then it is close in distribution to a low degree function on Gaussian space. There are many other
applications that we defer to future papers:

• Exotic settings: Noise sensitivity of sparse sets is related to small-set expansion on graphs,
which has found many applications in Computer Science. Here the interpretation of Theorem
1.8 is that although not all small sets in the p-biased cube expand, global small sets do expand.
Results of a similar nature were proved for the Grassman graph (see [37]) and the Johnson
graph (see [36]). The former result was essential in the proof of the 2-to-2 Games Conjecture,
a prominent problem in the �eld of hardness of approximation. Both these works involve
long calculations, and have sub-optimal parameters. In subsequent works [16, 17, 18, 30]
hypercontractive results for global functions are proven for various domains by reducing to
the p-biased cube and using Theorem 1.3. The results of [16, 17] imply the corresponding
results about small expanding sets in the Grassman/Johnson graph with optimal parameters.
A similar result was also established for a certain noise operator on the symmetric group [18].

• Extremal Combinatorics: The junta method, introduced by Dinur and Friedgut [13] and further
developed by Keller and Lifshitz [34], is a powerful tool for solving problems in Extremal
Combinatorics via the sharp threshold phenomenon. Speci�cally, it is useful for the study of
the Turán problem for hypergraphs, where one asks how large can a k-uniform hypergraph
on n vertices be if it does not contain a copy of a given hypergraph H. This method was
applied in [34] to resolve many such questions for a wide class of hypergraphs called expanded
hypergraphs in which the edge uniformity can be linear in n, although the number of edges
in H is �xed. In a companion paper [31], we apply the sharp threshold technology developed
in the current paper to the regime where the number of edges of H can grow with n, thus
settling many cases of the Huang�Loh�Sudakov conjecture [26] on cross matchings in uniform
hypergraphs and the Füredi�Jiang�Seiver conjecture on path expansions.

The organisation of this paper is as follows. After introducing some background on Fourier analysis
on the cube in the next section, we prove Theorem 1.3 in Section 3. In Section 4 we establish the
equivalence between the two notions of globalness referred to above, namely control of generalised
in�uences and insensitivitity of the measure under restriction to a small set of coordinates. Section 5
concerns the total in�uence of global functions, and includes the proofs of our stability results for the
isoperimetric inequality (Theorems 1.4 and 1.5) and our �rst sharp threshold result (Theorem 1.6).
In Section 6 we prove our result on noise sensitivity and apply this to deduce an alternative sharp
threshold result. Section 7 generalises our hypercontractivity result in two directions: we consider
general norms and general product spaces. In Section 8 we prove our p-biased version of the Invariance
Principle and sketch its application to a variant of the `Majority is Stablest' theorem and a sharp
threshold result for almost monotone functions. We end with some concluding remarks.

2. Notations

Here we summarise some notation and basic properties of Fourier analysis on the cube. We �x
p ∈ (0, 1) and suppress it in much of our notation, i.e. we consider {0, 1}n to be equipped with the
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p-biased measure µp, unless otherwise stated. We let σ =
√
p(1− p) (the standard deviation of a p-

biased bit). For each i ∈ [n] we de�ne χi : {0, 1}n → R by χi (x) = xi−p
σ (so χi has mean 0 and variance

1). We use the orthonormal Fourier basis {χS}S⊂[n] of L
2 ({0, 1}n , µp), where each χS :=

∏
i∈S χi.

Any f : {0, 1}n → R has a unique expression f =
∑
S⊂[n] f̂(S)χS where {f̂(S)}S⊂[n] are the p-biased

Fourier coe�cients of f . Orthonormality gives the Plancherel identity 〈f, g〉 =
∑
S⊂[n] f̂(S)ĝ(S). In

particular, we have the Parseval identity E[f2] = ‖f‖22 = 〈f, f〉 =
∑
S⊂[n] f̂(S)2. For F ⊂ {0, 1}n we

de�ne the F-truncation fF =
∑
S∈F f̂(S)χS . Our truncations will always be according to some degree

threshold r, for which we write f≤r =
∑
|S|≤r f̂(S)χS .

For i ∈ [n], the i-derivative fi and i-in�uence Ii(f) of f are

fi = Di [f ] = σ
(
fi→1 − fi→0

)
=
∑
S:i∈S

f̂ (S)χS\{i}, and

Ii(f) = ‖fi→1 − fi→0‖22 = σ−2E[f2
i ] = 1

p(1−p)

∑
S:i∈S

f̂(S)2.

The in�uence of f is

I(f) =
∑
i

Ii(f) = (p(1− p))−1
∑
S

|S|f̂(S)2.(2.1)

In general, for S ⊂ [n], the S-derivative of f is obtained from f by sequentially applying Di for each
i ∈ S, i.e.

DS(f) = σ|S|
∑

x∈{0,1}S
(−1)|S|−|x|fS→x =

∑
T :S⊂T

f̂(T )χT\S .

The S-in�uence of f (as in De�nition 1.2) is

IS(f) = σ−2|S|‖DS (f) ‖22 = σ−2|S|
∑

E:S⊂E
f̂(E)2.(2.2)

Recalling that a function f has α-small generalised in�uences if IS(f) ≤ αE[f2] for all S ⊂ [n], we see

that this is equivalent to E[DS (f)
2
] ≤ ασ2|S|E[f2] for all S ⊂ [n].

3. Hypercontractivity of functions with small generalised influences

In this section we prove our hypercontractive inequality (Theorem 1.3), which is the fundamental
result that underpins all of the results in this paper.

The idea of the proof is to reduce hypercontractivity in µp to hypercontractivity in µ1/2 via the
`replacement method' (the idea of Lindeberg's proof of the Central Limit Theorem, and of the proof of
Mossel, O'Donnell and Oleszkiewicz [46] of the invariance principle). Throughout this section we �x

f : {0, 1}n → R and express f in the p-biased Fourier basis as
∑
S f̂(S)χpS , where χ

p
S =

∏
i∈S χ

p
i and

χpi (x) = xi−p
σ (the same notation as above, except that we introduce the superscript p to distinguish

the p-biased and uniform settings).

For 0 ≤ t ≤ n we de�ne ft =
∑
S f̂(S)χtS , where

χtS =
∏

i∈S∩[t]

χ
1/2
i (x)

∏
i∈S\[t]

χpi (x) ∈ L2({0, 1}[t], µ1/2)× L2({0, 1}[n]\[t], µp).

Thus ft interpolates from f0 = f ∈ L2({0, 1}n, µp) to fn =
∑
S f̂(S)χ

1/2
S ∈ L2({0, 1}n, µ1/2). As

{χtS : S ⊂ [n]} is an orthonormal basis we have ‖ft‖2 = ‖f‖2 for all t.

We also de�ne noise operators Ttρ′,ρ on L2({0, 1}[t], µ1/2) × L2({0, 1}[n]\[t], µp) by Ttρ′,ρ(g)(x) =

Ey∼Nρ′,ρ(x)[f(y)], where to sample y from Nρ′,ρ(x), for i ≤ t we let yi = xi with probability ρ′ or

otherwise we resample yi from µ1/2, and for i > t we let yi = xi with probability ρ or otherwise we

resample yi from µp. Thus Ttρ′,ρ interpolates from T0
ρ′,ρ = Tρ (for µp) to Tnρ′,ρ = Tρ′ (for µ1/2).
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We record the following estimate for 4-norms of p-biased characters:

λ := E[(χpi )
4] = σ−4(p(1− p)4 + (1− p)p4) = σ−2((1− p)3 + p3) ≤ σ−2.

The core of our argument by replacement is the following lemma which controls the evolution of
E[(Tt2ρ,ρft)

4] = ‖Tt2ρ,ρft‖44 for 0 ≤ t ≤ n.

Lemma 3.1. E[(Tt−1
2ρ,ρft−1)4] ≤ E[(Tt2ρ,ρft)

4] + 3λρ4E[(Tt2ρ,ρ((Dtf)t))
4].

Proof. We write

ft = χ
1/2
t g + h and ft−1 = χpt g + h, where

g = (Dtf)t =
∑
S:t∈S

f̂(S)χtS\{t} =
∑
S:t∈S

f̂(S)χt−1
S\{t} = (Dtf)t−1, and

h = Ext∼µ1/2
ft =

∑
S:t/∈S

f̂(S)χtS =
∑
S:t/∈S

f̂(S)χt−1
S = Ext∼µpft−1.

We also write

Tt2ρ,ρft = 2ρχ
1/2
t d+ e and Tt−1

2ρ,ρft−1 = ρχpt d+ e, where

d = Tt2ρ,ρg = Tt−1
2ρ,ρg and e = Tt2ρ,ρh = Tt−1

2ρ,ρh.

We can calculate the expectations in the statement of the lemma by conditioning on all coordinates
other than xt, i.e. Ex[·] = Ex′ [Ext [· | x′]] where x′ is obtained from x = (x1, . . . , xn) by removing xt.
It therefore su�ces to establish the required inequality for each �xed x′ with expectations over the
choice of xt; thus we can treat d and e as constants, and it su�ces to show

(3.1) Ext [(ρdχ
p
t + e)4] ≤ Ext [(2ρdχ

1/2
t + e)4] + 3λρ4d4.

As χpt has mean 0, we can expand the left hand side of (3.1) as

(ρd)4E[(χpt )
4] + 4e(ρd)3E[(χpt )

3] + 6e2(ρd)2E[(χpt )
2] + e4 ≤ 3λ(dρ)4 + 8(deρ)2 + e4,

where we bound the second term using Cauchy-Schwarz then AM-GM by

4 · E[(dρχpt )
4]1/2 · E[(deρχpt )

2]1/2 ≤ 2
(
E[(dρχpt )

4] + E[(deρχpt )
2]
)

= 2(λ(dρ)4 + (deρ)2).

Similarly, as E[χ
1/2
t ] = E[(χ

1/2
t )3] = 0, we can expand the �rst term on the right hand side of (3.1) as

(2ρd)4E[(χ
1/2
t )4] + 6e2(2ρd)2E[(χ

1/2
t )2] + e4 = (2ρd)4 + 6(2ρde)2 + e3 ≥ 8(deρ)2 + e4.

The lemma follows. �

Now we apply the previous lemma inductively to prove the following estimate.

Lemma 3.2. ‖Ti2ρ,ρfi‖44 ≤
∑
S⊂[n]\[i](3λρ

4)|S|‖Tn2ρ,ρ((DSf)n)‖44 for all 0 ≤ i ≤ n.

Proof. We prove the inequality by induction on n− i simultaneously for all functions f . If n = i then
equality holds trivially. Now suppose that i < n. By Lemma 3.1 with t = i + 1, and the induction
hypothesis applied to f and Dtf with i replaced by t, we have

‖Ti2ρ,ρfi‖44 ≤ ‖Tt2ρ,ρft‖44 + 3λρ4‖Tt2ρ,ρ((Dtf)t)‖44
≤

∑
S⊂[n]\[t]

(3λρ4)|S|‖Tn2ρ,ρ((DSf)n)‖44 + 3λρ4
∑

S⊂[n]\[t]

(3λρ4)|S|‖Tn2ρ,ρ((DSDtf)n)‖44

=
∑

S⊂[n]\[i]

(3λρ4)|S|‖Tn2ρ,ρ((DSf)n)‖44. �

In particular, recalling that T0
2ρ,ρ = Tρ on µp and Tn2ρ,ρ = T2ρ on µ1/2, the case i = 0 of Lemma

3.2 is as follows.

Proposition 3.3. ‖Tρf‖44 ≤
∑
S⊂[n](3λρ

4)|S|‖T2ρ((DSf)n)‖44.
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The 4-norms on the right hand side of Proposition 3.3 are with respect to the uniform measure
µ1/2, where we can apply standard hypercontractivity (the `Beckner-Bonami Lemma') for ρ ≤ 1/2

√
3

to obtain ‖T2ρ((DSf)n)‖44 ≤ ‖(DSf)n‖42 = ‖DSf‖42 = σ4|S|IS(f)2. Recalling that λ ≤ σ−2, we deduce
the following bound for ‖Tρf‖44 in terms of the generalised in�uences of f .

Theorem 3.4. If ρ ≤ 1/
√

12 then ‖Tρf‖44 ≤
∑
S⊂[n](3λρ

4)|S|‖DSf‖42 ≤
∑
S⊂[n](3σ

2ρ4)|S|IS(f)2.

Now we deduce our hypercontractivity inequality. It is convenient to prove the following slightly
stronger statement, which implies Theorem 1.3 using ‖DSf‖22 = σ2|S|IS(f) ≤ λ−|S|IS(f) and ‖T1/5f‖4 ≤
‖T1/

√
24f‖4 (any Tρ is a contraction in Lp for any p ≥ 1).

Theorem 3.5. Let f ∈ L2 ({0, 1}n , µp) with all ‖DSf‖22 ≤ βλ−|S|E[f2]. Then ‖T1/
√

24f‖4 ≤
β1/4‖f‖2.

Proof. By Theorem 3.4 applied to T1/
√

2f with ρ = 1/
√

12 we have

‖T1/
√

24f‖
4
4 ≤

∑
S⊂[n]

(3λρ4)|S|‖DST1/
√

2f‖
4
2.

As ‖DST1/
√

2f‖22 =
∑
E:S⊂E 2−|E|f̂(E)2 ≤

∑
E:S⊂E f̂(E)2 = ‖DSf‖22 ≤ βλ−|S|E[f2] we deduce

‖T1/
√

24f‖
4
4 ≤

∑
S⊂[n]

∑
E:S⊂E

βE[f2]2−|E|f̂(E)2 = βE[f2]
∑
E

f̂(E)2 = β‖f‖42. �

3.1. Hypercontractivity in practice. We will mostly use the following application of the hyper-
contractivity theorem.

Lemma 3.6. Let f be a function of degree r. Suppose that IS(f) ≤ δ for all |S| ≤ r. Then

‖f‖4 ≤ 5
3r
4 δ

1
4 ‖f‖0.52 .

The proof uses the following lemma, which is immediate from the Fourier expression in (2.2).

Lemma 3.7. IS(f≤r) ≤ IS(f) for all S ⊂ [n] and IS(f≤r) = 0 if |S| > r.

Proof of Lemma 3.6. Write f = T1/5(h), where h =
∑
|T |≤r 5|T |f̂(T )χT . We will bound the 4-norm

of f by applying Theorem 1.3 to h, so we need to bound the generalised in�uences of h.
By Lemma 3.7, for S ⊂ [n] we have IS(h) = 0 if |S| > r. For |S| ≤ r, we have

IS(h) = σ−2|S|
∑

T :S⊂T,|T |≤r

52|T |f̂(T )2 ≤ 52rIS(f) ≤ 52rδ = α‖h‖22,

where α = 52rδ/‖h‖22. By Theorem 1.3, we have

‖f‖4 = ‖T1/5h‖4 ≤ α
1
4 ‖h‖2 = 5r/2δ

1
4

√
‖h‖2 ≤ 5

3r
4 δ

1
4

√
‖f‖2.

In the �nal inequality we used ‖h‖2 ≤ 5r‖f‖2, which follows from Parseval. �

4. Equivalence between globalness notions

Above we have introduced two notions of what it means for a Boolean function f to be global. The
�rst globalness condition, which appears e.g. in Theorem 1.4, is that the measure of f is not sensitive
to restrictions to small sets of coordinates. The second condition is a bound on generalised in�uences
IS(f) for small sets S. In this section we show that we can move freely between these notions for two
classes of Boolean functions: namely sparse ones and monotone ones.

Throughout we assume p ≤ 1/2, which does not involve any loss in generality in our main results;
indeed, if p > 1/2 we can consider the dual f∗(x) = 1− f(1− x) of any Boolean function f , for which
µ1−p(f

∗) = 1− µp(f) and Iµ1−p(f∗) = Iµp(f).
We start by formalising our �rst notion of globalness.



HYPERCONTRACTIVITY FOR GLOBAL FUNCTIONS AND SHARP THRESHOLDS 10

De�nition 4.1. We say that a Boolean function f is (r, δ)-global if µp (fJ→1) ≤ µp (f) + δ for each
set J of size at most r.

We remark that De�nition 4.1 is a rather weak notion of globalness, so it is quite surprising that
it su�ces for Theorems 1.5 and 1.8, where one might have expected to need the stricter notion that
µp(fJ→1) is close to µp(f).

The following lemma shows that if a sparse Boolean function is global in the sense of De�nition 4.1
then it has small generalised in�uences.

Lemma 4.2. Suppose that f : {0, 1}n → {0, 1} is an (r, δ)-global Boolean function with µp(f) ≤ δ.
Then IS

(
f≤r

)
≤ IS (f) ≤ 8rδ for all S ⊂ [n] with |S| ≤ r.

Proof. The �rst inequality is from Lemma 3.7. Next, we estimate

√
IS (f) =

∥∥∥∥∥∥
∑

x∈{0,1}S
(−1)

|S|−|x|
fS→x

∥∥∥∥∥∥
2

≤
∑

x∈{0,1}S
‖fS→x‖2 =

∑
x∈{0,1}S

√
µp(fS→x).(4.1)

Next we �x x ∈ {0, 1}S and claim that µp(fS→x) ≤ 2rδ. By substituting this bound in (4.1) we see
that this su�ces to complete the proof. Let T be the set of all i ∈ S such that xi = 1. Since f is

nonnegative, we have µp(fT→1) ≥ (1− p)|S\T | µp(fS→x). As f is (r, δ)-global and µp(f) ≤ δ, we have
µp (fT→1) ≤ 2δ, so µp(fS→x) ≤ (1 − p)|T |−r2δ ≤ 2rδ, where for the last inequality we can assume
T 6= ∅, as µp (fT→1) = µp(f) ≤ δ ≤ 2rδ. This completes the proof. �

Next we show an analogue of the previous lemma replacing the assumption that f is sparse by the
assumption that f is monotone.

Lemma 4.3. Let f : {0, 1}n → {0, 1} be a monotone Boolean (r, δ)-global function. Then IS (f) ≤ 8rδ
for every nonempty S of size at most r.

The proof is based on the following lemma showing that globalness is inherited (with weaker pa-
rameters) under restriction of a coordinate.

Lemma 4.4. Suppose that f is a monotone (r, δ)-global function. Then for each i:

(1) fi→1 is (r − 1, δ)-global,

(2) µp (fi→0) ≥ µp (f)− pδ
1−p ,

(3) fi→0 is
(
r − 1, δ

1−p

)
-global.

Proof. To see (1), note that for any J with |J | ≤ r − 1 we have µp((fi→1)J→1) = µp(fJ∪{i}→1) ≤
µp(f)+δ ≤ µp(fi→1)+δ, where the last inequality holds as f is monotone. Statement (2) follows from

the upper bound µp (fi→1) ≤ µp (f) + δ and µp (fi→0) =
µp(f)−pµp(fi→1)

(1−p) .

For (3), we note that by monotonicity µp ((fi→0)S→1) ≤ µp
(
f{i}∪S→1

)
. As f is (r, δ)-global,

µp
(
fS∪{i}→1

)
≤ µp (f) + δ ≤ µp (fi→0) + δ +

pδ

1− p
= µp (fi→0) +

δ

1− p
,

using (2). Hence, fi→0 is
(
r, δ

1−p

)
-global. �

Proof of Lemma 4.3. We argue by induction on r. In the case where r = 1, Lemma 4.4 and mono-
tonicity of f imply (using p ≤ 1/2)

Ii (f) = µp (fi→1)− µp (fi→0) ≤ δ +
pδ

1− p
≤ 2δ.

Now we bound IS∪{i} (f) for r > 1 and S of size r − 1 with i /∈ S.
Note that DS∪{i} (f) = DS [Di(f)]. By the triangle inequality, we have√

IS∪{i} (f) = σ−r‖DS∪{i}(f)‖2 = σ1−r‖DS(fi→1)−DS(fi→0)‖2 ≤
√

IS (fi→1) +
√

IS(fi→0).
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By the induction hypothesis and Lemma 4.4 the right hand side is at most
√

8r−1δ +
√

8r−12δ ≤
√

8rδ.

Taking squares, we obtain IS∪{i} (f) ≤ 8rδ. �

We conclude this section by showing the converse direction of the equivalence between our two
notions of globalness, i.e. that if the generalised in�uences of a function f are small then f is global in
the sense of its measure being insensitive to restrictions to small sets. (We will not use the lemma in
the sequel but include the proof for completeness.)

Lemma 4.5. Let f : {0, 1}n → {0, 1} be a Boolean function and let r > 0. Suppose that IS [f ] ≤ δ for
each nonempty set S of at most r coordinates. Then f is (r, 4rδ)-global.

Proof. To facilitate a proof by induction on r we prove the slightly stronger statement that f is
(r,
∑r
i=1 4i−1δ)-global. Suppose �rst that r = 1. Our goal is to show that if Ii[f ] < δ, then µp(fi→1)−

µp(fi→0) < δ, and indeed,

µp(fi→1)− µp(fi→0) ≤ Pr[fi→1 6= fi→0] = ‖fi→1 − fi→0‖22 = ‖Di[f ]‖22 = Ii[f ] < δ.

Now suppose that r > 1 and that the lemma holds with r−1 in place of r. The lemma will follow once
we show that for all i and all nonempty sets S of size at most r − 1, we have IS [fi→1] ≤ 4δ. Indeed,
the induction hypothesis and the n = 1 case will imply that for each set S of size at most r and each
i ∈ S we have µp(fS→1) ≤ µp(fi→1) +

∑r−1
i=1 4i−1 · 4δ ≤ µp(f) +

∑r
i=1 4i−1δ.

We now turn to showing the desired upper bound on the generalised in�uences of fi→1. Let S be a
set of size at most r−1. Recall that IS [fi→1] = ‖DS [fi→1]‖22. We may assume that i /∈ S for otherwise
the generalised in�uence IS [fi→1] is 0. We make two observations. Firstly, we have

DS∪{i}[f ] = DS [fi→1]−DS [fi→0].

Secondly, conditioning on the ouput of the coordinate i we have

‖DS [f ]‖22 = p‖DS [fi→1]‖22 + (1− p)‖DS [fi→0]‖22,
which implies ‖DS [fi→0]‖2 ≤

√
2‖DS [f ]‖2. We may now apply the triangle inequality on the �rst

observation and use the second observation to obtain√
IS [f ] = ‖DS [fi→1]‖2 ≤ ‖DS∪{i}[f ]‖2 + ‖DS [fi→0]‖2 ≤

√
δ +
√

2‖DS [f ]‖2 ≤ 2
√
δ.

Taking squares, we obtain the desired upper bound on the generalised in�uences of fi→1. �

5. Total influence of global functions

In this section we show that our hypercontractive inequality (Theorem 1.3) implies our stability
results for the isoperimetric inequality, namely Theorems 1.4 and 1.5. We also deduce our �rst sharp
threshold result, Theorem 1.6.

5.1. The spectrum of sparse global sets. The key step in the proofs of Theorems 1.5 and 1.8 is
to show that the Fourier spectrum of global sparse subsets of the p-biased cube is concentrated on the
high degrees. We recall �rst a proof that in the uniform cube (i.e. cube with uniform measure), all
sparse sets have this behaviour (not just the global ones). Our proof is based on ideas from Talagrand
[52] and Bourgain and Kalai [12].

Theorem 5.1. Let f be a Boolean function on the uniform cube, and let r > 0. Then∥∥f≤r∥∥2

2
≤ 3rµ1/2 (f)

1.5
.

The idea of the proof is to bound
∥∥f≤r∥∥2

2
=
〈
f≤r, f

〉
via Hölder by

∥∥f≤r∥∥
4
‖f‖4/3, bound the 4-norm

via hypercontractivity and express the 4/3-norm in terms of the measure of f using the assumption
that f is Boolean. For future reference, we decompose the argument into two lemmas, the �rst of
which applies also to the p-biased settting and the second of which requires hypercontractivity, and so
is speci�c to the uniform setting. Theorem 5.1 follows immediately from Lemmas 5.2 and 5.3 below.
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In the following lemma we consider {−1, 0, 1}-valued functions so that it can be applied to either a
Boolean function or its discrete derivative.

Lemma 5.2. Let f : {0, 1}n → {0, 1,−1}, let F be a family of subsets of [n], and let g(x) = fF =∑
S∈F f̂(S)χS(x). Then ‖g‖22 ≤ ‖g‖4‖f‖1.52 , where the norms can be taken with respect to an arbitrary

p-biased measure.

Proof. By Plancherel and Hölder's inequality, E[g2] = 〈f, g〉 ≤ ‖f‖4/3‖g‖4, where ‖f‖4/3 = E[f2]3/4 =

‖f‖1.52 as f is {−1, 0, 1}-valued. �

Applying Lemma 5.2 with g = f≤r, we obtain a lower bound on the 4-norm of g. We now upper
bound it by appealing to the Hypercontractivity Theorem.

Lemma 5.3. Let g be a function of degree r on the uniform cube. Then ‖g‖4 ≤
√

3
r ‖g‖2.

Proof. Let h be the function, such that T1/
√

3h = g, i.e. h =
∑
|S|≤r

√
3
|S|
ĝ (S)χS . Then the Hyper-

contractivity Theorem implies that ‖g‖4 ≤ ‖h‖2, and by Parseval ‖h‖2 ≤
√

3
r‖g‖2. �

We shall now adapt the proof of Theorem 5.1 to global functions on the p-biased cube. The only
part in the above proof that needs an adjustment is Lemma 5.3, and in fact we have already provided
the required adjustment in Section 3 in the form of Lemma 3.6.

Theorem 5.4. Let r ≥ 1, and let f : {0, 1}n → {0, 1,−1}. Suppose that IS [f≤r] ≤ δ for each set S of

size at most r. Then E[(f≤r)2] ≤ 5rδ
1
3E
[
f2
]
.

Proof. Applying Lemma 3.6 with g = f≤r, we obtain the upper bound ‖g‖4 ≤ 5
3r
4 δ

1
4 ‖g‖0.52 . Since the

function f takes values only in the set {0, 1,−1}, we may apply Lemma 5.2. Combining it with the
upper bound on the 4-norm of g, we obtain

‖g‖22 ≤ ‖g‖4‖f‖1.52 ≤ 5
3r
4 δ

1
4 ‖g‖0.52 ‖f‖1.52 .

Rearranging, and raising everything to the power 4
3 , we obtain ‖g‖

2
2 ≤ 5rδ

1
3 ‖f‖22. �

Let us say that f is ε-concentrated above degree r if ‖f≤r‖22 ≤ ε‖f‖22. The signi�cance of Theorem
5.4 stems from the fact that it implies the following result showing that for each r, ε > 0 there exists
a δ > 0 such that any sparse (r, δ)-global function is ε-concentrated above degree r.

Corollary 5.5. Let r ≥ 1. Suppose that f is an (r, δ)-global Boolean function with µp (f) < δ. Then

E[(f≤r)2] ≤ 10rδ
1
3µp(f).

Proof. By Lemma 4.2, for each S of size r we have IS
(
f≤r

)
≤ IS (f) < 8rδ. Then Theorem 5.4 implies

‖f≤r‖22 ≤ 10rδ
1
3 ‖f‖22, where since f is Boolean we have ‖f‖22 = µp(f). �

5.2. Isoperimetric stability. We are now ready to prove our variant of the Kahn-Kalai Conjecture
and sharp form of Bourgain's Theorem, both of which can be thought of as isoperimetric stability
results. Both proofs closely follow existing proofs and substitute our new hypercontractivity inequal-
ity for the standard hypercontractivity theorem: for the �rst we follow a proof of the isoperimetric
inequality, and for the second the proof of KKL given by Bourgain and Kalai [12] (their main idea is
to apply the argument we gave in Theorem 5.1 for each of the derivatives of f).

Proof of Theorem 1.5. We prove the contrapositive statement that for a su�ciently large absolute
constant C, if f is a Boolean function such that µp(fJ→1) ≤ e−CK for all J of size at most CK, then
pI[f ] > Kµp(f). Let f be such a function, and set δ = e−CK . Provided that C > 2, f is (2K, δ)-global,
and has p-biased measure at most δ. By Corollary 5.5, we have

‖f≤2K‖22 ≤ 102Kδ
1
3µp (f) ≤ µp (f) /2,

provided that C is su�ciently large. Hence,

‖f>2K‖22 = ‖f‖22 − ‖f≤2K‖22 ≥ µp (f) /2.

By (2.1) we obtain p(1− p)I[f ] ≥ 2K‖f>2K‖22, so pI[f ] > Kµp(f). �
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Next we require the following lemma which bounds the norm of a low degree truncation in terms
of the total in�uence.

Lemma 5.6. Let r ≥ 0. Suppose that for each nonempty set S of size at most r, IS
(
f≤r

)
≤ δ. Then

‖f≤r‖22 ≤ µp(f)2 + 5r−1δ
1
3σ2I[f ].

Proof. Let gi := fi→1 − fi→0. Then for each S of size at most r − 1, with i /∈ S we have

IS(g≤ri ) = IS∪{i}(f
≤r) ≤ δ,

and for each S containing i we have IS((gi)
≤r) = 0. By Lemma 5.4, E[((gi)

≤r)2] ≤ 5r−1δ
1
3E[g2

i ]. The
lemma now follows by summing over all i, using

∑
i E[g2

i ] = I(f):

‖f≤r‖22 =
∑
|S|≤r

f̂(S)2 ≤ f̂(∅)2 +
∑
|S|≤r

|S|f̂(S)2

= µp(f)2 + σ2
∑
i

E[((gi)
≤r)2] ≤ µp(f)2 + 5r−1δ1/3σ2I(f). �

We now establish a variant of Bourgain's Theorem for general Boolean functions, in which we replace
the conclusion on the measure of a restriction by �nding a large generalised in�uence.

Theorem 5.7. Let f : {0, 1}n → {0, 1}. Suppose that pI[f ] ≤ Kµp (f) (1 − µp(f)). Then there exists
an S of size 2K, such that IS(f) ≥ 5−8K .

Proof. Let r = 2K and let δ = 5−8K . Suppose for contradiction that IS(f) ≤ δ for each set S of size
at most r. By Lemma 5.6,

‖f≤r‖22 − µp(f)2 ≤ 5r−1δ1/3σ2I(f) < pI[f ]/2K ≤ µp(f)(1− µp(f))/2.

On the other hand, by Parseval

‖f − f≤r‖22 =
∑
|S|≥r

f̂(S)2 ≤ r−1
∑
|S|≥r

|S|f̂(S)2 ≤ r−1p(1− p)I(f) ≤ µp(f)(1− µp(f))/2.

However, these bounds contradict the fact that

µp(f)(1− µp(f)) = ‖f‖22 − µp(f)2 = ‖f≤r‖22 − µp(f)2 + ‖f − f≤r‖22. �

Proof of Theorem 1.4. The theorem follows immediately from Theorem 5.7 and Lemma 4.3. �

5.3. Sharpness examples. We now give two examples showing sharpness of the theorems in this
section, both based on the tribes function of Ben-Or and Linial [5].

Example 5.8. We consider the anti-tribes function f = fs,w : {0, 1}n → {0, 1} de�ned by s disjoint
sets T1, . . . , Ts ⊂ [n] each of size w, where f(x) =

∏s
j=1 maxi∈Tj xi, i.e. f(x) = 1 if for every j we

have xi = 1 for some i ∈ Tj , otherwise f(x) = 0. We have µp(f) = (1 − (1 − p)w)s and I[f ] =
µp(f)′ = sw(1 − p)w−1(1 − (1 − p)w)s−1. We choose s, w with s(1 − p)w = 1 (ignoring the rounding
to integers) so that µp(f) = (1 − s−1)s is bounded away from 0 and 1, and K = (1 − p)pI[f ] =
pw(1 − s−1)−1µp(f) = Θ(pw). Thus log s = w log(1 − p)−1 = Θ(K). However, for any J ⊂ [n] with

|J | = t ≤ s we have µp(fJ→1) ≤ (1 − s−1)s−t ≤ 2t/sµp(f), so to obtain a density bump of e−o(K) we

need t = e−o(K)s = eΩ(K) � K. Thus Theorem 1.4 is sharp.

Example 5.9. Let f(x) = fs,w(x)
∏
i∈T xi with fs,w as in Example 5.8 and T ⊂ [n] a set of size t

disjoint from ∪jTj . We have µp(f) = pt(1 − (1 − p)w)s and I[f ] = µp(f)′ = tpt−1(1 − (1 − p)w)s +
ptsw(1 − p)w−1(1 − (1 − p)w)s−1. We �x K > 1 and choose s, w with s(1 − p)w = K, so that
µp(f) = pt(1−K/s)s = pte−Θ(K) for s > 2K and p(1− p)I[f ] = µp(f)((1− p)t+ pwK(1−K/s)−1) =
µp(f)Θ(K) if pw = Θ(1) and t = O(K). For any J ⊂ [n] with |J | = t + u ≤ t + s we have

µp(fJ→1) ≤ (1−K/s)s−u ≤ e−K(1−u/s) ≤ e−K/2 unless u > s/2 = Θ(K). Thus Theorem 1.5 is sharp.
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5.4. Sharp thresholds: the traditional approach. In this section we deduce Theorem 1.6 from our
edge-isoperimetric stability results and the Margulis�Russo Lemma. Recall that a monotone Boolean
function is M -global in an interval if µp (fJ→1) ≤ µp (f)

0.01
for each p in the interval and set J of size

M . We prove the following slightly stronger version of Theorem 1.6.

Theorem 5.10. There exists an absolute constant C such that the following holds for any monotone
Boolean function f that is M -global in some interval [p, q]: if q ≤ pc and µp (f) ≥ e−M/C then

(5.1) µq (f) ≥ µp(f)(
p
q )

1/C

.

In particular, q ≤MCp.

Proof. By Theorem 1.5, since f is M -global throughout the interval, there exists a constant C such

that Ix [f ] ≥
µx(f) log( 1

µx(f)
)

Cx for all x in the interval [p, q]. By the Margulis-Russo lemma,

d

dx
log (− log(µx (f))) =

µx(f)′

µx(f) log(µx (f))
=

Ix[f ]

µx(f) log(µx (f))
≤ −1

Cx

in all of the interval [p, q]. Hence,

log (− log(µq(f))) ≤ log(− log(µp(f)))−
log( qp )

C
.

The �rst part of the theorem follows by taking exponentials, multiplying by−1 then taking exponentials
again. To see the �nal statement, note that q ≤ pc implies µq (f) ≤ 1

2 . We cannot have q ≥ M cp, as

then the right hand side in (5.1) would be larger than e−
1
C > 1/2 for large C. To obtain Theorem 1.6

we substitute q = pc. �

6. Noise sensitivity and sharp thresholds

We start this section by showing that sparse global functions are noise sensitive; Theorem 1.8 follows
immediately from Theorem 6.1.

Theorem 6.1. Let ρ ∈ (0, 1), and let ε > 0. Let r = log(2/ε)
log(1/ρ) , and let δ = 10−3r−1ε3. Suppose that f

is an (r, δ)-global Boolean function with µp (f) < δ. Then

Stabρ (f) ≤ εµp (f) .

Proof. We have

〈Tρf, f〉 ≤
∑
|S|≤r

f̂ (S)
2

+ ρr
∑
|S|>r

f̂ (S)
2 ≤ E

[(
f≤r

)2]
+
ε

2
µp(f).

The statement now follows from Corollary 5.5, which gives E[(f≤r)2] ≤ 10rδ1/3E[f2] < εµp(f)/2. �

In the remainder of this section, following [39], we deduce sharp thresholds from noise sensitivity
via the following directed noise operator, which is implicit in the work of Ahlberg, Broman, Gri�ths
and Morris [3] and later studied in its own right by Abdullah and Venkatasubramanian [1].

De�nition 6.2. Let D (p, q) denote the unique distribution on pairs (x, y) ∈ {0, 1}n × {0, 1}n such
that x ∼ µp, y ∼ µq, all xi ≤ yi and {(xi,yi) : i ∈ [n]} are independent. We de�ne a linear operator
Tp→q : L2({0, 1}n, µp)→ L2({0, 1}n, µq) by

Tp→q (f) (y) = E(x,y)∼D(p,q) [f (x) |y = y] .

The directed noise operator Tp→q is a version of the noise operator where bits can be �ipped only
from 0 to 1. The associated notion of directed noise stability, i.e. 〈f,Tp→qf〉µq , is intuitively a measure

of how close a Boolean function f is to being monotone. Indeed, for any (x,y) with all xi ≤ yi we
have f (x) f (y) ≤ f (x), with equality if f is monotone, so

〈f,Tp→qf〉 = E(x,y)∼D(p,q) [f (x) f (y)] ≤ E(x,y)∼D(p,q) [f (x)] = µp (f) ,
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with equality if f is monotone5. We note that the adjoint operator (Tp→q)
?

: L2({0, 1}n, µq) →
L2({0, 1}n, µp) de�ned by 〈Tp→qf, g〉 =

〈
f, (Tp→q)

?
g
〉
satis�es (Tp→q)

?
= Tq→p, where

Tq→p (g) (x) = E(x,y)∼D(p,q) [g (y) |x = x] .

The following simple calculation relates these operators to the noise operator.

Lemma 6.3. Let 0 < p < q < 1 and ρ = p(1−q)
q(1−p) . Then (Tp→q)

?
Tp→q = Tρ on L2({0, 1}n, µp).

Proof. We need to show that the following distributions on pairs of p-biased bits (x,x′) are identical:
(a) let x be a p-biased bit, with probability ρ let x′ = x, otherwise let x′ be an independent p-biased bit,
(b) let (x,y) ∼ D(p, q) and then (x′,y) ∼ D(p, q) | y. It su�ces to show P(x 6= x′) is the same in both
distributions. We condition on x. Consider x = 1. In distribution (a) we have P(x′ = 0) = (1−ρ)(1−p).
In distribution (b) we have P(y = 1) = 1 and then P(x′ = 0) = 1− p/q = (1− ρ)(1− p), as required.
Now consider x = 0. In distribution (a) we have P(x′ = 1) = (1 − ρ)p. In distribution (b) we have

P(y = 1) = q−p
1−p and then P(x′ = 1 | y = 1) = p/q, so P(x′ = 1) = p(q−p)

q(1−p) = (1− ρ)p, as required. �

We now give an alternative way to deduce sharp threshold results, using noise sensitivity, rather
than the traditional approach via total in�uence (as in the proof of Theorem 5.10). Our alternative
approach has the following additional nice features, both of which have been found useful in Extremal
Combinatorics (see [39]).

(1) To deduce a sharp threshold result in an interval [p, q] it is enough to show that f is global
only according to the p-biased distribution. This is a milder condition than the one in the
traditional approach, that requires globalness throughout the entire interval.

(2) The monotonicity requirement may be relaxed to �almost monotonicity�.

Proposition 6.4. Let f : {0, 1}n → {0, 1} be a monotone Boolean function. Let 0 < p < q < 1 and

ρ = p(1−q)
q(1−p) . Then µq(f) ≥ µp(f)2/Stabρ (f).

Proof. By Cauchy�Schwarz and Lemma 6.3,

µp (f)
2

= 〈Tp→qf, f〉2µq ≤ 〈T
p→qf,Tp→qf〉µq 〈f, f〉µq = 〈Tρf, f〉µp µq (f) . �

The above proof works not only for monotone functions, but also for functions where the �rst
equality above is replaced by approximate equality (which is a natural notion for a function to be
�almost monotone�). The following sharp threshold theorem for global functions is immediate from
Theorem 6.1 and Proposition 6.4.

Theorem 6.5. For any ζ > 0 there is C0 > 1 so that for any ε, p, q ∈ (0, 1/2) with q ≥ (1 + ζ)p and
C > C0, writing r = C log ε−1 and δ = C−r, any monotone (r, δ)-global Boolean function f whose
p-biased measure is at most δ satis�es µq(f) ≥ ε−1µp(f).

7. General hypercontractivity

In this section we generalise Theorem 1.3 in two di�erent directions. One direction is showing
hypercontractivity from general q-norms to the 2-norm (rather than merely treating the case q = 4);
the other is replacing the cube by general product spaces.

7.1. Hypercontractivity with general norms. We start by describing a more convenient general
setting in which we replace characters on the cube by arbitrary random variables. To motivate this
setting, we remark that one can extend the proof of Theorem 3.4 to any random variable of the form

(7.1) f =
∑
S⊂[n]

aS
∏
i∈S

Zi,

5The starting point for [39] is the observation that this inequality is close to an equality if f is almost monotone.
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where Z1, . . . ,Zn are independent real-valued random variables having expectation 0, variance 1 and
4th moment at most σ−2. To motivate the analogous setting for general q > 2, we note that the
characters χpi satisfy

E[|χpi |
q] ≤ ‖χpi ‖

q−2
∞ ‖χpi ‖

2
2 = σ2−q.

This suggests replacing the 4th moment condition by ‖Zi‖qq ≤ σ2−q. Given f as in (7.1), we de�ne the

(generalised) derivatives by substituting the random variables Zi for the characters χpi in our earlier
Fourier formulas, i.e.

Di[f ] =
∑
S: i∈S

aS
∏

j∈S\{i}

Zi and DT (f) =
∑

S:T⊂S
aS

∏
j∈S\T

Zi,

Similarly, we adopt analogous de�nitions of the generalised in�uences and noise operator, i.e.

IS [f ] = ‖ 1

σ
DS [f ]‖22 and Tρ[f ] =

∑
S

ρ|S|aS
∏
i∈S

Zi.

We prove the following hypercontractive inequality.

Theorem 7.1. Let q ≥ 2 and Z1, . . . ,Zn be independent real-valued random variables satisfying

E[Zi] = 0, E[Z2
i ] = 1, and E[|Zi|q] ≤ σ2−q.

Let f =
∑
S⊂[n] aS

∏
i∈S Zi and ρ <

1
2q1.5 . Then

‖Tρf‖qq ≤
∑
S⊂[n]

σ(2−q)|S|‖DS(f)‖q2.

Theorem 7.1 is a qualitative generalisation of Theorem 3.4 (with smaller ρ, which we do not attempt
to optimise). The following generalised variant of Theorem 1.3 follows by repeating the proof in Section
3.

Theorem 7.2. Let q > 2, let f =
∑
S⊂[n] aS

∏
i∈S Zi let δ > 0, and let ρ ≤ (2q)−1.5. Suppose that

IS [f ] ≤ β‖f‖22 for all S ⊂ [n]. Then

‖Tρ[f ]‖q ≤ β
q−2
2q ‖f‖2.

We now begin with the ingredients of the proof of Theorem 7.1, following that of Theorem 3.4. For
0 ≤ t ≤ n let

ft =
∑
S

aSχ
t
S , where χtS =

∏
i∈S∩[t]

χ
1/2
i

∏
i∈S\[t]

Zi.

Here, just as in Section 3, the function ft interpolates from the original function f0 = f to fn =∑
S aSχ

1/2
S ∈ L2({0, 1}n, µ1/2). As {χtS : S ⊂ [n]} are orthonormal we have ‖ft‖2 = ‖f‖2 for all t.

As before, we de�ne the noise operators Ttρ′,ρ on a function f =
∑
S aSχ

t
S by

Tt[f ] =
∑
S

ρ′|S∩[t]|ρ|S\[t]|aSχ
t
S .

Thus Ttρ′,ρ interpolates from T0
ρ′,ρ = Tρ (for the original function) to Tnρ′,ρ = Tρ′ (for µ1/2).

Our goal will now be to adjust Lemma 3.1 to the general setting, which is similar in spirit to
the 4-norm case, although somewhat trickier. It turns out that the case n = 1 poses the main new
di�culties, so we start with this in the next lemma.

Lemma 7.3. Let q > 2 and Z be a random variable satisfying E[Z] = 0,E[Z2] = 1,E[|Z|q] ≤ σ2−q.

Let e, d ∈ R and ρ ∈ (0, 1
2q ). Then ‖e+ ρdZ‖qq ≤ ‖e+ dχ

1
2 ‖qq + σ2−qdq.

Proof. If e = 0 then the lemma is trivial. Therefore we may rescale and assume that e = 1. It will be
convenient to consider both sides of the inequality as functions of d: we write

f(d) = ‖1 + ρdZ‖qq and g(d) = ‖1 + dχ
1
2 ‖qq + σ2−qd.

As f(0) = g(0), it su�ces to show that f ′(0) = g′(0) and f ′′ ≤ g′′ everywhere.
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Let us compute the derivatives. We note that the function x 7→ |xq| has derivative q|x|q−1sign(x),
which is in turn continuously di�erentiable for q > 2. Thus

f ′ = E[q |1 + ρdZ|q−1
sign(1 + ρdZ)ρZ] = ρqE[|1 + ρdZ|q−1sign(1 + ρdZ)Z] and

f ′′ = (q − 1)qρ2E[|1 + ρdZ|q−2Z2].

Di�erentiating g we obtain

g′ = qE
[ ∣∣∣1 + dχ

1
2

∣∣∣q−1

sign(1 + dχ
1
2 )χ

1
2

]
+ qσ2−qdq−1 and

g′′ = q(q − 1)E
[ ∣∣∣1 + dχ

1
2

∣∣∣q−2 (
χ

1
2

)2 ]
+ q(q − 1)dq−2σ2−q ≥ q(q − 1)/2 + q(q − 1)dq−2σ2−q.

Thus g′(0) = f ′(0) = 0 and it remains to show f ′′ ≤ g′′ everywhere. Our strategy for bounding f ′′ is
to decompose the expectation over two complementary events E1 and E2, where E1 is the event that
|1 + ρdZ| ≤ |dZ| (and E2 is its complementary event). We write f ′′ = f ′′1 + f ′′2 , where each

f ′′i = (q − 1)qρ2E[|1 + ρdZ|q−2Z21Ei ].

First we note the bound

f ′′1 ≤ q(q − 1)ρ2dq−2E[|Z|q] ≤ q(q − 1)dq−2σ2−q.

Given the above lower bound on g′′, it remains to show f ′′2 ≤ q(q − 1)/2. On the event E2 we have

|dZ| ≤ |1 + ρdZ| ≤ 1 + |ρdZ|.

Rearranging, we obtain |ρdZ|(ρ−1 − 1) ≤ 1. Since ρ−1 ≥ 2q, we get

1 + |ρdZ| ≤ 1 +
1

2q − 1
.

Using E[Z2] = 1 this yields

f ′′2 ≤ q(q − 1)ρ2
(

1 +
1

2q − 1

)q−2

≤ eρ2q(q − 1) ≤ q(q − 1)/2.

Hence f ′′ = f ′′1 + f ′′2 ≤ g′′ for any value of d. This completes the proof of the lemma. �

We are now ready to show the replacement step.

Lemma 7.4. E[(Tt−1
2qρ,ρft−1)q] ≤ E[(Tt2qρ,ρft)

q] + σ2−qE[(Tt2qρ,ρ((Dtf)t))
q].

Proof. We write

ft = χ
1/2
t g + h and ft−1 = χpt g + h, where

g = (Dtf)t =
∑
S:t∈S

f̂(S)χtS\{t} =
∑
S:t∈S

f̂(S)χt−1
S\{t} = (Dtf)t−1, and

h = Ext∼µ1/2
ft =

∑
S:t/∈S

f̂(S)χtS =
∑
S:t/∈S

f̂(S)χt−1
S = EZtft−1.

We also write

Tt2qρ,ρft = 2qρχ
1/2
t d+ e and Tt−1

2qρ,ρft−1 = ρZtd+ e, where

d = Tt2qρ,ρg = Tt−1
2qρ,ρg and e = Tt2qρ,ρh = Tt−1

2qρ,ρh.

As before, we can calculate the expectations in the statement of the lemma by conditioning on all

coordinates other than Zt and χ
1
2
t , so the lemma follows from Lemma 7.3, with 2qd in place of d. �

From now on, everything is similar to Section 3. We may apply the previous lemma inductively to
obtain.

Lemma 7.5. ‖Ti2qρ,ρfi‖qq ≤
∑
S⊂[n]\[i] σ

(2−q)|S|‖Tn2qρ,ρ((DSf)n)‖qq for all 0 ≤ i ≤ n.
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In particular, recalling that T0
2qρ,ρ = Tρ on the original function and Tn2qρ,ρ = T2qρ on µ1/2, the

case i = 0 of Lemma 7.5 is as follows.

Proposition 7.6. ‖Tρf‖qq ≤
∑
S⊂[n] σ

(2−q)|S|‖T2qρ((DSf)n)‖qq.

The q-norms on the right hand side of Proposition 7.6 are with respect to the uniform measure µ1/2,

where we can apply standard hypercontractivity with noise rate ≤ 1/
√
q − 1 to obtain

‖T2qρ((DSf)n)‖qq ≤ ‖(DSf)n‖q2 = ‖DSf‖q2.
This completes the proof of Theorem 7.1.
In the case where the Zi have di�erent qth moments, the proof can be adjusted to give a better

upper bound. We write

(7.2) E[Zqi ] = σ2−q
i , σS =

∏
i∈S

σi and IS [f ] = ‖ 1

σS
DS [f ]‖22.

The proof of Theorem 7.1 yields the following variant of Theorem 3.4.

Theorem 7.7. Let q ≥ 2, let ρ ≤ (2q)−1.5, and let f =
∑
aS
∏
i∈S Zi with Zi as in (7.2). Then

‖Tρf‖qq ≤
∑
S⊂[n]

σ2−q
S ‖DS [f ]‖q2.

The following variant of Theorem 1.3 follows from Theorem 7.7. The proof is similar to the one
given in Section 3, where Theorem 1.3 is deduced from Theorem 3.4.

Theorem 7.8. Let q > 2, β > 0 and ρ ≤ (2q)−1.5. Suppose f =
∑
S⊂[n] aS

∏
i∈S Zi with Zi as in

(7.2) has IS [f ] ≤ β‖f‖22 for all S ⊂ [n]. Then

‖Tρf‖q ≤ β
q−2
2q ‖f‖2.

Finally, we state the following variant of Lemma 3.6, which is easy to deduce from Theorem 7.8.

Lemma 7.9. Let q > 2 and δ > 0. Suppose f =
∑
S⊂[n] aS

∏
i∈S Zi with Zi as in (7.2) has IS [f ] ≤ δ

for all |S| ≤ r. Then
‖f‖q ≤ (2q)1.5rδ

q−2
2q ‖f‖

2
q

2 .

7.2. A hypercontractive inequality for product spaces. Now we consider the setting of a general
discrete product space (Ω, ν) =

∏n
t=1(Ωt, νt). We assume pt = minωt∈Ωt νt(ωt) ∈ (0, 1/2) for each

t ∈ [n], and we write p = mint pt. We recall the projections EJ on L2(Ω, ν) de�ned by (EJf)(ω) =
EωJ [f(ω) | ωJ ], the generalised Laplacians LS de�ned by composing Lt for all t ∈ S, where Ltf =

f − Etf , and the generalised in�uences IS(f) = E[LS(f)2]
∏
i∈S σ

−2
i , where σ2

i = pi(1− pi).
We will require the theory of orthogonal decompositions in product spaces, which we summarise

following the exposition in [47, Section 8.3]. For f ∈ L2(Ω, ν) and J, S ⊂ [n] we write f⊂J = EJf and

de�ne f=S =
∑
J⊂S(−1)|S\J|f⊂J (inclusion-exclusion for f⊂J =

∑
S⊂J f

=S). This decomposition is

known as the Efron�Stein decomposition [15]. The key properties of f=S are that it only depends on
coordinates in S and it is orthogonal to any function that depends only on some set of coordinates not
containing S; in particular, f=S and f=S′ are orthogonal for S 6= S′. We note that f = f⊂[n] =∑
S f

=S . We have similar Plancherel / Parseval relations as for Fourier decompositions, namely
〈f, g〉 =

∑
S f

=Sg=S , so E[f2] =
∑
S(f=S)2.

Our goal in this section is to prove an hypercontractive inequality for the Efron�Stein decomposition
in the spirit of Theorem 3.4. The noise operator is de�ned by Tρ[f ] =

∑
S⊂[n] ρ

|S|f=S . It also has a

combinatorial interpretation, which is similar to the usual one on the p-biased setting. Given x ∈ Ω,
a sample y ∼ Nρ(x) is chosen by independently setting yi to xi with probability ρ and resampling it
from (Ωi, νi) with probability 1 − ρ. In the general product space setting there are no good analogs
to Di[f ] and DS(f), and we instead work with the Laplacians, which have similar Fourier formulas:
Li[f ] =

∑
S: i∈S f

=S , and LT [f ] =
∑
S:T⊂S f

=S . In the special case where Ωi = {0, 1} we have
‖LS [f ]‖2 = ‖DS [f ]‖2. It will be convenient to write σS =

∏
i∈S σi.
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The main result of this section is the following theorem.

Theorem 7.10. Let f ∈ L2(Ω, ν), let q > 2 be an even integer, and let ρ ≤ 1
8q1.5 . Then

‖Tρf‖qq ≤
∑
S⊂[n]

σ2−q
S ‖LS [f ]‖q2.

The idea of the proof is as follows. We encode our function f ∈ L2(Ω, ν) as a function f̃ :=∑
S ‖f=S‖2χS for appropriate χS =

∏
i∈S χi (in fact, these will be biased characters on the cube). We

then bound ‖Tρf‖q by ‖Tρf̃‖q and use Theorem 7.8 to bound the latter norm.
The main technical component of the theorem is the following proposition.

Proposition 7.11. Let g ∈ L2(Ω, ν) let χS =
∏
i∈S χi, where χi are independent random variables

having expectation 0, variance 1, and satisfying E[χjS ] ≥ σ2−j
S for each integer j ∈ (2, q]. Let g̃ =∑

S⊂[n] ‖g=S‖2χS. Then

‖g‖q ≤ ‖g̃‖q.

Below, we �x χS as in the proposition, and let ◦̃ denote the operator mapping a function g ∈ L2(Ω, ν)
to the function

∑
S⊂[n] g

=SχS .

To prove the proposition, we will expand out ‖g‖qq and ‖g̃‖qq according to their de�nitions and

compare similar terms: namely, we show that a term of the form E[
∏q
i=1 g

=Si ] is bounded by the
corresponding term in ‖g̃‖qq, i.e.

∏q
i=1 ‖g=Si‖2E[

∏q
i=1 χSi ]. We now establish such a bound.

We begin with identifying cases in which both terms are equal to 0, and for that we use the
orthogonality of the decomposition {g=S}S⊂[n]. Afterwards, we only rely on the fact that g=S depends
only on the coordinates in S.

Lemma 7.12. Let q be some integer, let g ∈ L2(Ω, ν), and let S1, . . . , Sq ⊂ [n] be some sets. Suppose
that some j ∈ [n] belongs to exactly one of the sets S1, . . . , Sq. Then

E

[
q∏
i=1

g=Si

]
= 0 and E

[
q∏
i=1

χSi

]
= 0.

Proof. Assume without loss of generality that j ∈ S1. The second equality E [
∏q
i=1 χSi ] = 0 follows

by taking expectation over χj , using the independence between the random variables χi. For the �rst
equality, observe that the function

∏q
i=2 g

=Si depends only on coordinates in S2 ∪ · · · , Sq ⊂ [n] \ {j}.
Hence the properties of the Efron�Stein decomposition imply

0 =

〈
g=S1 ,

q∏
i=2

g=Si

〉
= E

[
q∏
i=1

g=Si

]
. �

Thus we only need to consider terms corresponding to S1, . . . , Sq in which each coordinate appears
in at least two sets. To facilitate our inductive proof we work with general functions fi that depend
only on coordinates of Si (rather than only with the functions of the form g=Si).

Lemma 7.13. Let f1, . . . , fq ∈ L2(Ω, ν) be functions that depend on sets S1, . . . , Sq respectively. Let
Ti for i = 3, . . . , q be the set of coordinates covered by the sets S1, . . . , Sq exactly i times. Then∣∣∣∣∣E

[
q∏
i=1

fi

]∣∣∣∣∣ ≤
q∏
i=1

‖fi‖2 ·
q∏
j=3

σ2−j
Tj

.

Proof. The proof is by induction on n, simultaneously for all functions. We start with the case n = 1,
which we prove by reducing to the case that all fi are eqal.
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The case n = 1. Here each fi either depends on a single input or is constant and depends only on the
empty set. We may assume that none of the fi's is constant, as otherwise we may eliminate it from
the inequality by dividing by |fi|. By the generalised Hölder inequality we have∣∣∣∣∣E

[
q∏
i=1

fi

]∣∣∣∣∣ ≤
q∏
i=1

‖fi‖q.

Hence the case n = 1 of the lemma will follow once we prove it assuming all the fi are equal.

The n = 1 case with equal fi's. We show that if (Ω, ν) is a discrete probability space in which any

atom has probability at least p, then ‖f‖qq ≤ ‖f‖
q
2σ

2−q, where σ =
√
p(1− p).

While the inequality ‖f‖2 ≤ ‖f‖q holds in any probability space, the reverse inequality holds in any
measure space where each atom has measure at least 1. Accordingly, we consider the measure ν̃ on Ω
de�ned by ν̃(x) = ν(x)p−1. Then

‖f‖qq,ν = p‖f‖qq,ν̃ ≤ p‖f‖
q
2,ν̃ = p1− q2 ‖f‖q2,ν ≤ σ2−q‖f‖q2,ν .

This completes the proof of the n = 1 case.

The inductive step. Let f1, . . . , fq ∈ L2(Ω, ν) be functions. Let x ∼
∏n−1
i=1 (Ωi, νi). By the n = 1

case we have: ∣∣∣∣∣E
[
q∏
i=1

fi

]∣∣∣∣∣ =

∣∣∣∣∣Ex

[
E

[
q∏
i=1

(fi)[n−1]→x

]]∣∣∣∣∣ ≤ Ex

[
q∏
i=1

‖(fi)[n−1]→x‖2σjn

]
,

where j is 2− i if n ∈ Ti for i ≥ 3, and otherwise 0. The lemma now follows by applying the inductive
hypothesis on the functions x→ ‖(fi)[n−1]→x‖ and using

∥∥∥∥(fi)[n−1]→x

∥∥
2

∥∥
2,x

= ‖fi‖2. �

Proof of Proposition 7.11. We wish to upper bound

E[gq] =
∑

S1,...,Sq

E

[
q∏
i=1

g=Si

]
by ∑

S1,...,Sq

E

[
q∏
i=1

χSi

]
q∏
i=1

‖g=Si‖2.

We upper bound each term participating in the expansion of gq by the corresponding term in g̃q.
In the case the sets Si cover some element exactly once, Lemma 7.12 implies that both terms are
0. Otherwise, the sets Si cover each element either 0 times or at least 2 times; let Ti be the set of
elements of S1, . . . , Sq appearing in exactly i of the sets (as in Lemma 7.13). By the assumption of the

proposition, we have E [
∏q
i=1 χSi ] ≥

∏q
i=3 σ

2−|Ti|
Ti

. The proof is concluded by combining this with the

upper bound on E
[∏q

i=1 g
=Si
]
following from Lemma 7.13 with fi = g=Si . �

Proof of Theorem 7.10. Let σ′i =
√
pi/4(1− pi/4). We choose χi to be the pi

4 -biased character, χi =
xi−pi/4

σ′i
. Clearly χi has mean 0 and variance 1, and a direct computation shows that E

[
χji

]
≥ (σi)

2−j

for all integer j > 2, hence all of the conditions of Proposition 7.11 hold.
Denote σ′S =

∏
i∈S σ

′
i and set h = T 1

4
f , g = T 1

2q1.5
h. By Proposition 7.11 and Theorem 7.7 we have

‖T 1
8q1.5

f‖qq = ‖g‖qq ≤ ‖g̃‖qq ≤
∑
S

(σ′S)2−q‖DS [h̃]‖2.

We note that by Parseval, the 2-norm of h̃ and its derivatives are equal to the 2-norm of h and its
Laplacians, and thus the last sum is equal to∑

S

(σ′S)2−q‖LS [h]‖q2 ≤
∑
S

(σS)2−q‖LS [f ]‖q2.
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In the last inequality we used σ′S ≥ 2−|S|σS and ‖LS [h]‖q ≤ 2−q|S|‖LS [f ]‖q2 (which follows from
Parseval). This completes the proof of the theorem. �

8. An invariance principle (for global functions)

Invariance (also known as Universality) is a fundamental paradigm in Probability, describing the
phenomenon that many random processes converge to a speci�c distribution that is the same for many
di�erent instances of the process. The prototypical example is the Berry-Esseen Theorem, giving a
quantitative version of the Central Limit Theorem (see e.g. [47, Section 11.5]). More sophisticated
instances of the phenomenon that have been particularly in�uential on recent research in several areas
of Mathematics include the universality of Wigner's semicircle law for random matrices (see [42]) and
of Schramm�Loewner evolution (SLE) e.g. in critical percolation (see [51]).

In the context of the cube, the Invariance Principle is a powerful tool developed by Mossel, O'Donnell
and Oleszkiewicz [46] while proving their `Majority is Stablest' Theorem, which can be viewed as an
isoperimetric theorem for the noise operator. Roughly speaking, the result (in a more general form due
to Mossel [44]) is that `majority functions' (characteristic functions of Hamming balls) minimise noise
sensitivity among functions that are `far from being dictators'. The Invariance Principle converts many
problems on the cube to equivalent problems in Gaussian Space; in particular, `Majority is Stablest'
is converted into an isoperimetric problem in Gaussian Space which was solved by a classical theorem
of Borell [11] (half-spaces are isoperimetric).

In the basic form (see [47, Section 11.6]) of the Invariance Principle, we consider a multilinear real-
valued polynomial f of degree ≤ k and wish to compare f(x) to f(y), where x and y are random
vectors each having independent coordinates, according a smooth (to third order) test function φ.
(Comparison of the cumulative distributions requires φ to be a step function, but this can be handled
by smooth approximation.) The version of [47, Remark 11.66] shows that if the coordinates xi have
mean 0, variance 1 and are suitably hypercontractive (satisfy ‖a+ρbxi‖3 ≤ ‖a+bxi‖2 for any a, b ∈ R),
and similarly for yi, then

(8.1)
∣∣E[φ(f(x))]− E[φ(f(y))]

∣∣ ≤ 1
3‖φ

′′′‖∞ρ−3k
∑
i∈[n]

Ii(f)3/2.

The hypercontractivity assumption applies e.g. if the coordinates are standard Gaussians or p-
biased bits (renormalised to have mean 0 and variance 1) with p bounded away from 0 or 1, but if
p = o(1) then we need ρ = o(1), in which case their theorem becomes ine�ective. We will apply our
hypercontractivity inequality to obtain an invariance principle that is e�ective for small probabilities
and functions with small generalised in�uences. We adopt the following setup.

Setup 8.1. Let σ1, . . . , σn > 0, let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be random vectors with
independent coordinates, where each Xi and Yi are real-valued random variable with mean 0, variance
1, and satisfy ‖Xi‖33 ≤ σ−1

i and ‖Yi‖33 ≤ σ−1
i . Let f ∈ R[v] be a multilinear polynomial of degree d in

n variables v = (v1, . . . , vn). Let φ : R→ R be smooth.

For S ⊂ [n] we write f̂(S) for the coe�cient in f of vS =
∏
i∈S vi. We writeWS(f) =

∑
J:S⊂J f̂(J)2

and similarly to Section 7.1 we de�ne the generalised in�uences by IS(f) = WS(f)
∏
i∈S σ

−2
i .

We write Tρ[f ] =
∑
S⊂[n] ρ

|S|f̂(S)vS .

Now we state our invariance principle, which compares f(X) to f(Y).

Theorem 8.2. Under Setup 8.1, if IS [f ] ≤ ε for each nonempty set S, then

|E[φ(f(X))]− E[φ(f(Y))]| ≤ 25d‖φ′′′‖∞W∅(f)
√
ε.

The term W∅(f) can be replaced by either E[f(X)2] or E[f(Y)2] as they are all equal.

Theorem 8.2 can be informally interpreted as saying that if a multilinear, low degree polynomial f
is global, then the distribution of f(X) does not really depend on the distribution of X except for the
mean and variance of each coordinate.
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In particular, it implies that plugging in the p-biased characters into f results in a fairly similar
distribution to the one resulting from plugging in the uniform characters into f . A posteriori, this
may be seen as an intuitive explanation for Theorem 1.3, as the standard hypercontractivity theorem
holds in the uniform cube.

Next, we set up some notations and preliminary observations for the proof of Theorem 8.2. Through-
out we �x X, Y, f , and φ as in Setup 8.1. We write XS =

∏
i∈SXi, and similarly for Y. Recall that

f =
∑
S f̂(S)vS is a (formal) multilinear polynomial in R[v] of degree d. Note that f(X) =

∑
S f̂(S)XS

has E[f(X)2] =
∑
S f̂(S)2, as EX2

S = 1 and E[XSXT ] = 0 for S 6= T . The random variable

f(X) has the orthogonal decomposition f =
∑
S f

=S with each f=S = f̂(S)XS . Further note that

LSf(X) =
∑
J:S⊂J f̂(J)XJ so we have the identities

IS(f)
∏
i∈S

σ2
i = E[(LSf(X))2] = E[(LSf(Y))2] =

∑
J:S⊂J

f̂(J)2 = WS↑(f).

We apply the replacement method as in Section 3 (and as in the proof of the original invariance
principle by Mossel, O'Donnell and Oleszkiewicz [46]). For 0 ≤ t ≤ n, de�ne Z:t = (Z:t

1 , . . . ,Z
:t
n) =

(Y1, ...,Yt,Xt+1, ...,Xn), and note that f(Z:t) has the orthogonal decomposition f(Z:t) =
∑
S f(Z:t)=S

with

f(Z:t)=S = f̂(S)ZS = f̂(S)YS∩[t]XS\[t].

Proof of Theorem 8.2. We adapt the exposition in [47, Section 11.6]. As Z:0 = X and Z:n = Y we
have by telescoping and the triangle inequality

|E[φ(f(X))]− E[φ(f(Y))]| ≤
n∑
t=1

|E[φ(f(Z:t−1))]− E[φ(f(Z:t))]|.

Consider any t ∈ [n] and write

f(Z:t−1) = Ut + ∆tYt and f(Z:t) = Ut + ∆tXt, where

Ut = Etf(Z:t−1) = Etf(Z:t) and ∆t = Dtf(Z:t−1) = Dtf(Z:t).

Both of the functions Ut and ∆t are independent of the random variables Xt and Yt.
By Taylor's Theorem,

φ(f(Z:t−1)) = φ(Ut) + φ′(Ut)∆tYt + 1
2φ
′′(Ut)(∆tYt)

2 + 1
6φ
′′′(A)(∆tYt)

3, and

φ(f(Z:t)) = φ(Ut) + φ′(Ut)∆tXt + 1
2φ
′′(Ut)(∆tXt)

2 + 1
6φ
′′′(A′)(∆tXt)

3,

for some random variables A and A′. As Xt and Yt have mean 0 and variance 1 we have 0 =
E[φ′(Ut)∆tYt] = E[φ′(Ut)∆tXt] and E[φ′′(Ut)(∆t)

2] = E[φ′′(Ut)(∆tYt)
2] = E[φ′′(Ut)(∆tXt)

2], so

|E[φ(f(Z:t−1))]− E[φ(f(Z:t))]| ≤ 1
6‖φ

′′′‖∞(E[|∆tXt|3] + E[|∆tZt|3]) ≤ 1
3‖φ

′′′‖∞σ−1
t ‖∆t‖33.

The function ∆t is the function Dt[f ] applied on random variables satisfying the hypothesis of
Lemma 7.9. Moreover, IS [Dt[f ]] is either 0 when t ∈ S, or σ2

t IS∪{t}[f ] when t /∈ S, in which case

IS [f ] ≤ σ2
t ε. Hence, by Lemma 7.9 (with q = 3), we obtain

‖∆t‖33 ≤ 64.5dσt
√
ε‖∆t‖22 = 64.5dσt

√
ε ·
∑
S3t

f̂(S)2.

Hence,

n∑
t=0

1
3‖φ

′′′‖∞σ−1
t ‖∆t‖33 ≤ 64.5d

√
ε 1

3‖φ
′′′‖∞

∑
S

|S|f̂(S)2 ≤ 64.5d
√
εd3‖φ

′′′‖∞W∅(f).

This completes the proof of the theorem since 64.5d d
3 ≤ 212d. �
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8.1. Applications of hypercontractivity. We now list some corollaries of the invariance principle.
Following O'Donnell [47, Chapter 11] one can easily obtain the following variant of the `majority is
stablest' theorem of Mossel, O'Donnell and Oleszkiewicz [46] (see also [44]).

The p-biased α-Hamming ball on {0, 1}n is the function Hα whose value is 1 on an input x if and
only if x has at least t coordinates equal to 1, and t is chosen so that µp(Hα) is as close to α as possible.

Corollary 8.3. For each ε > 0, there exists δ > 0, such that the following holds. Let ρ ∈ (ε, 1− ε), let
n > δ−1, and let f, g ∈ L2({0, 1}n, µp). Suppose that IS [f ] ≤ δ and that IS [g] ≤ δ for each set S of at
most δ−1 coordinates. Then

〈Tρf, g〉 ≤
〈
TρHµp(f), Hµp(g)

〉
+ ε.

The proof goes along the same lines of [44], and we omit it.

As an additional application, one can obtain the following sharp threshold result for almost mono-
tone Boolean functions. This statement asserts that any such function which is global has a sharp
threshold. Let us remark that we have already established such a result in the sparse regime (see
Section 6). On the other hand, the version below applies in the dense regime.

With notation as in Section 6, we say that f is (δ, p, q)-almost monotone if p < q ∈ (0, 1) and
choosing x,y ∼ D(p, q) gives Pr[f(y) = 0, f(x) = 1] < δ. We say that f has an ε-coarse threshold in
an interval [p, q] if µp(f) > ε and µq(f) < 1− ε.

Corollary 8.4. For each ε > 0, there exists δ > 0, such that the following holds. Let p < q < 1
2 , and

suppose that q > (1 + ε)p. Let f be a (δ, p, q)-almost monotone Boolean function having an ε-coarse
threshold in an interval [p, q]. Then there exists a set S of size at most 1

δ , such that IS [f ] ≥ δ either
with respect to the p-biased measure or with respect to the q-biased measure.

The proof is similar to the one given by Lifshitz [39], so we only sketch it.

Proof sketch. First we observe that Corollary 8.3 extends to the one sided noise operator. Let f1 = f
be the function viewed as a function on the p-biased cube, and let f2 = f be the function viewed as a
function on the q-biased cube. So assuming for contradiction that IS [f ] ≤ δ for each S, we obtain an
upper bound on 〈Tp→qf1, f2〉µq of the form 〈Tp→qHµp(f), Hµq(f)〉µq

However, the (δ, p, q)-almost monotonicity of f implies the lower bound 〈Tp→qf1, f2〉µq 〉 ≥ µp(f)−δ.
Standard estimates on 〈Tp→qHµp(f), Hµq(f)〉µq show that the lower bound and the upper bound

cannot coexist provided that δ is su�ciently small (see [39]). �

9. Concluding remarks

We are optimistic that our sharp threshold result in the sparse regime will have many applications
in the same vein as the applications of the classical sharp threshold results, e.g. to Percolation [6],
Complexity Theory [20], Coding Theory [38], and Ramsey Theory [21].

In particular, it may be possible to estimate the location of thresholds in the spirit of the Kahn-
Kalai conjecture [28, Conjecture 2.1] that the threshold probability pc(H) for �nding some graph H
in G(n, p) should be within a log factor of its `expectation threshold' pE(H) (the probability at which
every subgraph H ′ of H we expect at least one copy of H ′). This question is interesting when |V (H)|
depends on n, e.g. if H is a bounded degree spanning tree it predicts pc(H) = O(n−1 log n), which was
a longstanding open problem, recently resolved by Montgomery [43].

To obtain similar results from our sharp threshold theorem (Theorem 1.6), one needs to show that
the property of containing H is not `local': writing µp = P(H ⊂ G(n, p)), this means that if we plant

any set E of O(logµ−1
p ) edges we still have P(H ⊂ G(n, p) | E ⊂ G(n, p)) ≤ µ

O(1)
p . An open problem

is to apply this approach to estimate other thresholds that are currently unknown, e.g. the threshold
for containing any given H of maximum degree ∆.

Our variant of the Kahn-Kalai conjecture on isoperimetric stability is only e�ective in the p-biased
setting for small p, whereas the corresponding known results [35, 33] for the uniform measure are
substantial weaker. This leaves our current state of knowledge in a rather peculiar state, as in many
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related problems the small p case seems harder than the uniform case! A natural open problem is give
a uni�ed approach extending both results for all p.

Our �nal open problem is to obtain a generalisation of Hatami's Theorem to the sparse regime, i.e. to
obtain a density increase from µp (f) = o (1) to µq (f) ≥ 1−ε under some pseudorandomness condition
on f ; we expect that a such result would have profound consequences in Extremal Combinatorics.

Acknowledgment. We would like to thank Yuval Filmus, Ehud Friedgut, Gil Kalai, Nathan Keller,
Guy Kindler, and Muli Safra for various helpful comments and suggestions.
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